
57

Local Optima Troubles AI

Artificial Intelligence as a field has always been

rich with problems difficult to solve through
formal frameworks. These include natural
language understanding, machine learning,
game playing, planning and scheduling, pattern
recognition, and so on. Among these are two
major concerns which have attracted much
attention, with relatively few effective solutions.
One is the ability of a human being (and many
other animals) to adapt to changes. We have
certain types of behaviour which has become
our nature. But if the environment changes
overnight into something else (e.g. you move into
a city from a village), we modify our behavioural
patterns based on our observations of the current
environment, till the new set of behaviour
becomes natural. How does one model such an
ability in a computer?

Another, perhaps more important concern has
been optimisation. There are a number of
problems which we face routinely where we
would like an optimal solution. How to get to
work in the shortest period of time? How to make
a business/holiday trip with minimal expenses?
How to schedule exams in the minimum time
and maximising the convenience of teachers and
students? How to identify best bus routes in a
city? How to make a railway timetable? There
are dozens of such examples we can think of.
The field of operations research and related
mathematics have been seized of this problem
for many decades. Specialised techniques are
available for use when the problem satisfies
specific restrictions, for example, variable values
are deterministic, constraints are linear, etc. A
general purpose solution model applicable to a
wide range of problems is yet to emerge.

Researchers in AI have been interested in these
problems from the beginning. It was soon obvious
that one has to search through all possible
solutions in some manner to guarantee optimal
solution. However, this is too time consuming.
Even simple analysis will show that to get answer
to non-trivial problems would require time of

Genetic Algorithms:

Darwin solves some AI problems

M. Sasikumar

been used to solve problems which are
difficult to solve through formal
framworks. Use of Genetic Algorithm
as a solution model with neural network
design to scheduling problems are been
touched featuring GA as a valuable tool
for solving a number of practical complex
problems discussing the issues like local
optima troubles AI, Design of
Evolutionary Solution, forming a
population, crossover/ mating with
reference to the basic GA model.

Artificial intelligence as a field has always

Mr. M. Sasikumar is Head Department of
Artificial Inteligence C-DAC, Mumbai.

58

the order of the age of the universe! Therefore,
AI has actively pursued efficient ways to search
through large spaces. This is quite similar to
searching on a landscape for something like the
tallest point. Your ability to locate the tallest point
depends on visibility, obstruction due to your
current neighbourhood, etc. Search spaces also
posed similar problems, perhaps the most
complex of which was what was called local
optima. As you grope around for higher and
higher regions, you reach a peak. Now every
surrounding move takes you to a point of lower
height. But you have no idea if you have reached
the highest peak! You are stuck! This local optima
problem is a tricky problem to address; most
search algorithms give up on this issue.

Given these challenges, researchers have been
exploring various search models. You can find
ideas such as simulated annealing, iterative
deepening A*, etc for example. In this article, we
discuss an interesting idea inspired by the process
of evolution!

Help from Mother Nature

When faced with difficult problems, it is not
unusual for us to turn to mother (biological as
well as nature!) for help. Similarly phenomena
observed in nature has inspired many ideas and
inventions. The idea of aircraft came from birds.
Neural networks is inspired by whatever little is
known of how human brain works. Observation
of ants finding efficient path to food has led to a
method known as ‘ant colony optimisation’. The
flocking behaviour of birds in flight has inspired
much work in the area of Artificial Life.

In this case, the inspiration came from evolution.
Going by the Darwinian model of evolution and
Mendell’s theories of genetics, nature has done
a wonderful job of evolving sophisticated entities
in evolution. Both the models are based on very
simple ideas. In genetics, the chromosome
provides a more compact representation of an
individual than using the individual directly. It is
a blueprint of an individual which determines
all the critical aspects of an individual in its life
time, and also what it will pass on to its children.

The mating process enables nature to combine
chromosomes from multiple individuals and
create new combinations. In addition, nature also
does random mutations in a chromosome from
time to time. These are its tools to create variations
in the chromosome structure, and thus producing
individuals with different combinations of
characteristics. Note that these changes are not
induced by nature in response to some stimulus.
If you move to a hot climate from cold, it is not
likely that your children will have more
characteristics for living in a hot climate. Nature
experiments randomly. This is an important
aspect of this model. It is darwin’s model which
tilts the balance to a dominance of hot-climate
oriented people over a period.

Darwin’s model suggests that those individuals
with the most suitable characteristics for a given
environment will survive better in that
environment. Those who survive longer produces
more children and hence creates more copies
of individuals with that characteristic. Traits which
are bad in a given environment leads to poor
survival probability, leading to the extinction of
individuals with that trait.

Genetic algorithm as a solution strategy borrows
essentially these ideas and adapts them for a
computer implementation. Do remember that
though we take inspirations and ideas from
nature, we do not mimic it blindly. Our aircrafts
do not flap their wings when flying; they offer a
better solution for our problem (longer distance,
carry bigger weight, etc) than a bird does. The
artificial neural networks we implement in a
computer, do not resemble the biological neural
network except on a few aspects. Similarly, we
adopt the basic ideas outlined above and adapt
them to suit our constraints and requirements.

Implementing an optimisation solution as an
algorithm based on the evolution model requires
us to formalise the notion of a chromosome,
mechanism to map a chromosome to an
individual to determine its behavioural
characteristics, mimic the ‘survival of fittest’
notion, and mechanisms to make changes in the
chromosome as we move from generation to

59

generation. We discuss these, in the context of a
simple example, in the next section.

Designing an Evolutionary Solution

Consider the popular, but difficult to solve,
problem of the travelling sales person (TSP). There
are N cities (C1, C2, ...) interconnected through
a road network. Going from one city Ci to another
city Cj incurs a certain cost which is a function of
the source and destination (and nothing else),
and is denoted as Pij. One has no formula to
compute Pij, in general, and hence will be given
a matrix of numbers corresponding to all i-j
values. The person has to visit all the cities once,
and would like to minimise the total expenses.
The problem for us is to find the path for him.
For example, your solution may look like: C5,
C10, C3, C2,, with each city occurring once
and only once. Its cost would be
P(5,10)+P(10,3)+P(3,2)+....

The simplest way to solve this problem is to try
every route. Considering 5 cities, we have the
following routes to be explored.

1,2,3,4,5 1,2,3,5,4 1,2,4,3,5
1,2,4,5,3

1,3,2,4,5 1,3,2,5,4 1,3,4,2,5
1,3,4,5,2

and so on...

There will be 5! ways (approx 120). Find out the
figure for 20 cities and see how quickly the
number of options grow. It is infeasible to try even
a fraction of this within reasonable time. Various
heuristic solutions have been proposed to give
good solutions; but no guarantee of optimal
solutions. Heuristics generally have their weak
points; they can give horrible solutions for certain
data sets.

Let us try the genetic algorithm model for this.

The basic idea is to create a situation for
evolution to occur, for which we first need a
population. We also need to formulate a
chromosome structure for an individual. (To keep
the length of this article within limits, I will not
follow the historical developments of ideas in

GA; rather I will attempt to illustrate the key
aspects of a GA through a realistic example.)

Gene Structure: There are various ways of
formulating a chromosome structure for this
problem. One simple way is to just use an array
G of numbers, with G

i
 representing the ith city to

be visited. So the chromosome structure looks
essentially like the solution. As an alternative, We
can denote G

i
 to denote an offset from the

previous city. If the (i-1)th city is C, then the next
city is C+Gi. In this case, to get the solution, we
need to process the chromosome structure. In
some applications, the chromosome structure
can be very different from the solution. We will
adopt the array representation mentioned first.

Forming a population: Having decided the
chromosome structure, it is easy to formulate a
population of individuals. To start with we select
a few randomly generated permutations of the
sequence 1,2,3,...,N - each permutation
representing one individual. Note that every
permutation is a valid solution, and only a
permutation is valid (each number once and only
once in a solution). Let us create S such solutions
to form our population. Obviously, the S
solutions vary in their quality. Some may be very
expensive, and some may be quite good. Here is
an example for a population for a 5-city case,
with S = 6.

· P1: 1,3,4,2,5

· P2: 1,4,2,5,3

· P3: 2,3,4,5,1

· P4: 1,3,5,2,4

· P5: 1,3,5,2,4

· P6: 2,4,1,3,5

Crossover/mating: We are now ready to play
the game imitating nature. We allow the
individuals to mate in pairs to produce children,
which are in turn valid solutions. In the original
model of genetic algorithm, the chromosome
structure was a simple binary string like
1100101010. So mating could be implemented
by taking alternate bits from each parent, taking

60

first 50% of the bits from the first parent and the
rest from the second, and so on. These provide
comparable contribution to the children from
both the parents. In our case, such simple
approaches can give us trouble. Consider two
solutions: 1,2,3,4,5 and 5,4,3,2,1, and any
interleaving of cities from these two. Unless we
are careful, the resulting solution may not be a
permutation of 1 to 5, and hence an invalid
solution. In the GA parlance, one can find a
plethora of such mating operators (called
crossover) suitable for various representations.
Here is one operator which works for us:

Cut one of the solutions at some random point,
say, after the third number in our example. Take
the first part as the start of the child. So the child
starts as 1,2,3,x,x. The cities remaining to be
included are 4 and 5. These remaining cities are
listed in the order in which they occur in the
second parent. In the example, this is 5,4. So the
child chromosome will be: 1,2,3,5,4. Note that
this borrows some aspect of the order from both
parents. This is the basic concern in choosing a
crossover operator: the child solution should
borrow ideas from both parents.

So we pick a pair of solutions (chromosomes)
from the population, mate them as above to get
a child chromosome. Actually, the way most cross
over operator is implemented, you get two
children in each crossover: you get the second
one by doing the same process after
interchanging the two parents. The children may
be better or worse than the parents.

One crucial concern is in selection of parent
chromosomes. Remember our earlier
observation of fitter individuals being able to
reproduce more. This is very important to ensure
that their chromosome structure is propagated
more than the others. Keeping this in view, parent
selection is normally done with a bias towards
fitter solutions. Remember that getting a desirable
change in behaviour may take multiple changes
in the chromosome. As these changes occur one
by one in a chromosome, the intermediate
solutions may look bad. Imagine the growth of a
hand on our body. Just a growth from the sides

would possibly be bad for survival. Until the
growth evolves into a full fledged hand, its impact
on the fitness may be negative. But if you never
give these individuals with a partially developed
hand a chance to participate in evolution
through mating, etc, the hand never gets a chance
to evolve. Thus we do not completely rule out
anyone from the mating. But the good ones get
to do it more often, compared to the poor ones.

We repeat this process N/2 times so that we have
N more solutions in the population. Then the
selection process is applied - the best N from the
total of 2.N solutions present now, are retained
and the others are discarded.

Now we are in the second generation with a set
of N solutions in the population, and we are
ready for the next cycle. Repeat the entire
process. You will notice that the average solution
quality of the population improves from
generation to generation. This is the basic process
of a Genetic algorithm based solution.

One more point before we close our design of a
GA solution for TSP. Crossover only passes on
existing information to a child chromosome; it
does not try anything new. For example, if our
initial population never contained the sequence
1,5,2 in that order, and if we just use crossover
we will never get a solution with this sequence.
May be the optimal solution has this sequence.
So crossover by itself is not enough to explore a
solution space. This is the role of mutation.
Mutation introduces random changes in a
solution. Normally these are small changes, so as
not to drastically modify the solution. An
example of mutation in our TSP example would
be to swap two cities in a solution (1,2,3,4,5
becomes 1,2,4,3,5 for example). Crossover
combined with mutation provides a balanced
set of operators for a GA based approach.

Be Careful Though...

Based on the discussion above, a GA based
approach may look very simple and adhoc. The
basic GA model is indeed very simple. Note that
the model is also quite general. You choose a
chromosome representation, design crossover

61

and mutation procedures, and provide a fitness-
evaluation function and the above model can
be used. So why is it that not everyone is using
GA for every problem?

The model is “deceptively” simple. On the one
side, GA has no magical powers to convert an
unsolvable problem into solvable class. It has
some strengths which enable it to perform better
than other approaches for many problems. Recall
the adaptivity and local optima problems
mentioned earlier. Since we have a population
of solutions at any time, the chance of all of them
getting stuck on a local peak is remote - just like
a team of people exploring rather than a single
person. This is one big strength.

Adaptivity is a relatively unexploited
characteristic, though quite powerful. Suppose
you run the program for a few generations, and
got a few very good solutions. Suppose the
environment now changes suddenly. In our case,
this means the evaluation function changes. What
was good a generation earlier is no longer good!
But, GA has no big problem in adapting. Unlike
other models, GA does not remember what
changes the various individuals in the population
has gone through. So it continues to give
opportunity for the changes to be undone as
much as for fresh changes to come in. And it
starts rating solutions based on the new
evaluation function. Over a period, the system
will generate solutions which are good in the
new environment. In dynamic enviroments this
will be a major asset.

One major drawback is the blackbox nature of
GA. It is difficult to see how it works. Though
there are mathematical formulations using what
is called “schema theorem” (we will not discuss it
here), they are still not rich enough to be of use
practically. Selection of a good representation,
operator, etc are still an art. Normally there are a
plethora of options available for these. There are
few practically useful guidelines. On the other
hand, the apparent simplicity of GA model
encourages people to try it out without deep
thought on all the relevant issues. For example,
how big a change can mutation make? How do

you select between a few available crossover
operators? Is it good to have multiple crossover
and mutation operator, or a single one of each?
Are both types essential in all cases? What fraction
of solutions should be mutated? What is a good
population size for a given problem? What criteria
should a good representation satisfy? There are
quite a few such questions which are today
answered largely empirically. But, the answers
are important to get an algorithm that works.
Blind application can result in random
exploration of the huge search space, and
frustrating wait!.

Also remember that GA can never guarantee
optimal solution. The results so far only shows
that GA does better than most commonly used
algorithms and that it is a general purpose
algorithm which can quickly adapt to particular
problem characteristics. In general, one need to
run GA multiple times and choose the best
solution obtained.

Conclusion

GA as a solution model has been around for a
few decades now. More and more problems
covering variety of areas from natural language
processing and neural network design to
scheduling problems are being attempted
through GA. There are even attempts to evolve
computer programs through this approach - a
field called evolutionary programming. The field
has a large amount of adhocism - without
adequate attempt to understand the system.
There is some scattered work in developing
mathematical abstractions and formal analysis.
This is an active area of research. There is also
substantial interest in exploiting parallelism on
shared and distributed memory machines, cluster
environments, etc. The inherently parallel nature
of evolution makes it capable of exploiting large
computing power; however, there are complex
research issues regarding the effectiveness of large
scale parallelism in GA.

In this article, we have touched upon only the
major components and parameters. There are
quite a few more as one gets closer to an
implementation. They are not difficult to

62

understand, in purpose and significance, once
the basics are understood. When properly
understood and carefully applied, GA is a
valuable tool for solving a number of practical
complex problems.

REFERENCES

• An introudction to genetic algorithms. D
Beasely, DR Bull, and RR Martin. Vivek Vol 7
(I), January 1994.

• Research topics in genetic algorithms. D
Beasely, DR Bull, and RR Martin. Vivek Vol 7

(2), April 1994.

• Handbook of Genetic Algorithms. Lawrence
Davis (ed). Van Nostrand Reinhold, 1991.

• Genetic Algorithms in search, optimisation and
machine learning. DE Goldberg. Addison
Wesley, 1989.

• Genetic algorithms + data structures =
evolution programs. Zbigniew Michalewicz,
Springer-verlag, 1992.

• Useful websites :- http://www.genetic-
rogramming.org/ and http://
www.illigal.ge.uiuc.edu/index/php3 (IlliGAL
project) These websites provide pointers to a
number of other relevant sites, current research
work, applications and related areas.

• John Holland, “Genetic Algorithms”, Scientific

American, July 1992.

